Pilot Plant Testing of Piperazine (PZ) with Advanced Flash Regeneration

Gary T. Rochelle (PI) & Eric Chen The University of Texas at Austin

Katherine Dombrowski (PM), AECOM

Andrew Sexton (PjM), Trimeric

Bruce Lani, DOE PM

# **Advanced Flash Stripper (AFS)**



# **New Equipment on Skid**



# Outline

- Funding and objectives : NCCC fall 2017
- Capital and Energy << MEA</li>
- Solvent Management of PZ Prepared

# **Project Budget (\$million)**

|            | BP1 | BP2 | Total |
|------------|-----|-----|-------|
| Federal    | 1.6 | 3.3 | 5.2   |
| Cost Share | 1.1 | 0.3 | 1.5   |
| Total      | 2.7 | 3.6 | 6.7   |

Cost share by CO<sub>2</sub> Capture Pilot Plant Project (C2P3)



# **Objective is to develop PZ with advanced regeneration at 150°C**

| PZ           | <ul> <li>Optimize solvent (8m vs 5m)</li> <li>Demonstrate resistance to oxidation, nitrosation, &amp; corrosion</li> </ul> |
|--------------|----------------------------------------------------------------------------------------------------------------------------|
| Regeneration | <ul> <li>Two stage flash (2SF)</li> <li>Advanced flash stripper (AFS)</li> </ul>                                           |
| Aerosols     | <ul><li>Formation and control</li><li>Characterization</li></ul>                                                           |

### Phased testing at UT SRP and NCCC to optimize PZ absorption/regeneration





### Phased testing at UT SRP and NCCC to optimize PZ absorption/regeneration



# Our test window: Fall 2017 parametric Spring 2018 long-term

|                           |   | 2017 |   |    |   |    |   |    |   |    |    |    | 2018 |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
|---------------------------|---|------|---|----|---|----|---|----|---|----|----|----|------|---|----|----|----|----|---|----|---|----|----|----|----|----|----|----|----|----|---|----|-----|
| Activity                  | J | an   | F | eb | М | ar | A | pr | М | ay | JL | In | Jl   | l | Au | Jg | Se | ер | 0 | ct | Ν | 0V | De | ec | Já | an | Fe | eb | Ma | ar | Ą | or | May |
| Skid Installed            |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Water Test                |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Commissioning             |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Start-Up                  |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Parametric Field Campaign |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Long-term Field Campaign  |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Site Restoration          |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |
| Analysis/Reporting        |   |      |   |    |   |    |   |    |   |    |    |    |      |   |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |   |    |     |

## Advanced amine scrubbing gives 50% efficiency Limited by capital-energy tradeoff



### AFS also works with other solvents

|                   | kg'                                         | W <sub>eq</sub> (kJ/mol CO <sub>2</sub> ) |       |  |  |  |  |  |  |
|-------------------|---------------------------------------------|-------------------------------------------|-------|--|--|--|--|--|--|
| Solvent           | (10 <sup>-7</sup> mol/Pa-s-m <sup>2</sup> ) | Simple stripper                           | AFS   |  |  |  |  |  |  |
| 7m MEA            | 4.3                                         | 36.3                                      | 32.7  |  |  |  |  |  |  |
| 10m DGA           | 3.6                                         | 37.0                                      | 34.2  |  |  |  |  |  |  |
| 8m PZ             | 8.5                                         | 34.9                                      | 31.4  |  |  |  |  |  |  |
| 5m PZ             | 11.3                                        | 36.5                                      | 32.3  |  |  |  |  |  |  |
| 2m PZ<br>/3m HMPD | 10.1                                        | 34.9                                      | 31.0  |  |  |  |  |  |  |
| •                 | $Rich P_{CO_2}^* = 5  kPa, Lec$             | $an P_{CO_2}^* = 0.2 \ kPa$               | 0.175 |  |  |  |  |  |  |

• Optimum cross exchanger 
$$\Delta T_{LM} = 5K \left(\frac{\mu}{\mu_{MEA}}\right)^{0.1}$$

#### AFS provides reversible stripper performance 90% removal, 0.24 lean ldg



#### **Possible long term conditions at NCCC** 0.24 lean ldg, 150°C/82 psia stripper, 2x20 ft absorber packing

| CO <sub>2</sub><br>removal<br>(%) | Gas Rate<br>(MW) | Rich Ldg<br>(mol<br>CO2/eq PZ) | L/L <sub>min</sub> | W <sub>eq</sub><br>(kwh/tonne) | Q<br>(GJ/tonne) |
|-----------------------------------|------------------|--------------------------------|--------------------|--------------------------------|-----------------|
| 90                                | 0.5              | 0.387                          | 1.006              | 256                            | 2.56            |
| 98.5                              | 0.5              | 0.366                          | 1.16               | 260                            | 2.61            |
| 95.4                              | 0.8              | 0.380                          | 1.10               | 274                            | 2.77            |

## **PZ losses and environmental impact**

- Resistant to corrosion, use more carbon steel
- Moderate volatility
  - Manage losses with water wash
  - Manage impurities with thermal reclaiming
- Manage aerosol with grow and capture
- Resistant to Degradation
  - –Thermally stable to 150°C
  - -Oxidation, 4x less than MEA
  - Nitrosation, decompose at 150°C
- Manage solid precipitation with rich storage

# **SRP Pilot Plant Corrosion 2017**

- Two ER corrosion probes in stripper
  - 316L SS
  - 1010 CS
- One ORP Probe
- In addition, one ER probe in absorber sump



### **SRP Pilot Plant Corrosion 2017**

| Location | Alloy | T (°C) | Avg. Loading<br>(mol CO <sub>2</sub> /mol N) | Corrosion<br>(µm/yr) |
|----------|-------|--------|----------------------------------------------|----------------------|
| Absorber | C1010 | 30     | 0.33                                         | 331                  |
| Stripper | C1010 | 150    | 0.21                                         | 325                  |
| Stripper | 316L  | 150    | 0.21                                         | 174                  |

• Absorber corrosion greater than expected

Corrosion (µm/yr)

**Good** 100 - 500

**Poor** 1000 - 5000

Unacceptable 5000+

• Low Fe<sup>2+</sup> solubility in PZ may result in FeCO<sub>3</sub> protective layer.





# **Oxidation Mitigation**

- Reaction w D.O.: 0.05 mmol/kg/cycle in HTOR
  - Minimize holdup at high temperature before stripper
  - Strip O<sub>2</sub> with N<sub>2</sub> mmol/(kg-cycle-mmol/kg Fe<sup>2+</sup>)
- Fe<sup>2+</sup> solubilized by degradation products
  - Oxidation  $\rightarrow$  Fe<sup>2+</sup> accumulation  $\rightarrow$  more oxidation
  - NO<sub>2</sub>  $\rightarrow$  MNPZ  $\rightarrow$  Oxidation in pilots w/ coal flue gas
    - Prescrub NO<sub>2</sub> and reclaim solvent to minimize Fe<sup>2+</sup>

### **Growth slows down at high part. number conc 5 m PZ, NCCC conditions**





### Baghouse at NCCC significantly reduced MEA emissions



# SO<sub>3</sub> Generation



### 10 to 30 ppm SO<sub>3</sub> usually not always produce aerosol



# Conclusions

- The Advanced Flash stripper will reduce  $W_{eq}$  by 10-20% for PZ and other solvents
- 5 m PZ is a superior solvent
  - Fast absorption, thermally stable, high P stripper
  - Good resistance to corrosion, oxidation
  - Managed aerosol

- Acknowledgement: "This material is based on work supported in part by the Department of Energy under Award Number DE-FE0005654."
- **Disclaimer:** "This report was prepared as an account of work" sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."